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ABSTRACT Fourier ptychography microscopy (FPM) is a lately developed technique, which achieves wide
field, high resolution, and phase imaging, simultaneously. FPM stitches together the captured low-resolution
images corresponding to angular varying illuminations in Fourier domain utilizing the concept of synthetic
aperture and phase retrieval algorithms, which can surpass the space-bandwidth product limit of the objective
lens and reconstruct a high-resolution complex image. In general FPM system, the LED source is important
for the reconstructed quality and it is sensitive to the positions of each LED element. We find that the random
positional deviations of each LED element can bring errors in reconstructed results, which is relative to a
feedback parameter. To improve the reconstruction rate and correct random deviations, we combine an initial
phase guess and a feedback parameter based on differential phase contrast and extended ptychographical
iterative engine to propose an optimized iteration process for FPM. The simulated and experimental results
indicate that the proposed method shows the reliability and validity towards the random deviations yet
accelerates the convergence. More importantly, it is verified that this method can accelerate the convergence,
reduce the requirement of LED array accuracy, and improve the quality of the reconstructed results.

INDEX TERMS Computational imaging, imaging system, microscopy, phase retrieval.

I. INTRODUCTION
Fourier ptychographic (FP) [1]–[3] is a computational
imaging technique, which aims to recover sample’s high-
resolution (HR) complex (amplitude and phase) informa-
tion and acquire wide field-of-view (FOV), although only
intensity data are measured. It is based on the concept
of ptychography [4]–[6] which overcomes the physical
space-bandwidth-product (SBP) limit. Instead of moving
a limited-size illumination probe sequentially in conven-
tional ptychography, it uses a LED array source to obtain
different illumination oblique plane waves. Then a set of
low-resolution (LR) intensity images of the specimen with
quantitative overlap are recorded and their correspond-
ing components can be iteratively combined in Fourier
domain to realize synthetic aperture [7]–[9] and phase
retrieval [10]–[14]. Recently, the application of FP
in microscopic imaging, termed Fourier ptychographic
microscopy (FPM) has been introduced [15]. As a result,
the diffraction limit of the objective can be expanded and the
SBP of microscope can be boosted. Besides, because of the

non-interferometric phase retrieval technique, a HR complex
image can be reconstructed. The resolution of the final recon-
structed image is determined by the sum of synthetic-aperture
(objective lens and illumination NAs) [6]. Because FPM is a
kind of label-free imaging offering the HR and wide FOV
complex images, numerous applications [17]–[20] have been
implemented in it within a few years.

In conventional FPM, alternating projections (AP) which
updates the objective function between the space and Fourier
domain iteratively is widely used. However, it is sensitive to
noises and positional errors. In order to optimize the original
FPM, some studies have been reported [21]–[31]. On the
one hand, because of the long acquisition time for measured
images, it limits the application in real-time observation.
Thereby, some studies aim to reduce the acquisition time
effectively [21]–[23]. The multiplexed coded illumination,
sparsely sampled strategies and content adaptive illumination
method have been demonstrated to reduce the acquisition
time effectively. On the other hand, more and more noise-
robust and system aberrations correction algorithms have
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been proposed to improve the accuracy of reconstructed
results. Some studies have adopted other phase retrieval algo-
rithms to replace the AP process, such as Wirtinger flow
optimization (WFP) [24] which is suitable for Gaussian noise.
Some have also proposed fast gradational reconstruction to
adapt noises and improve convergence [25], embedded pupil
function recovery to update pupil function [26] and threshold
model to correct noises and aberrations [27]. Furthermore,
similar to the probe of conventional ptychography, the sam-
ple and illuminating LED matrix are both positional fixed
while each LED is used for illuminating during the images
acquisition process in FPM platform. Thus the position-
ing errors of LEDs, which will bring distorted information
into captured raw images, is an essential systematic aber-
ration in FP settings. The conjugate gradient [13] and the
annealing [28] ptychographic correction algorithm have been
developed. Recently, the efficient positional misalignment
correction method (pcFPM) has been proposed based on
the simulated annealing (SA) algorithm [29]. It introduces
a global positional misalignment model of the LED matrix
and updates LED position estimate. And it is valid for global
LED matrix misplaced. However, there are some random
deviations during the manufacturing and welding process of
each LED. It can generate unequal interval LED elements
and introduce distortion to the reconstructed results. So the
conventional recovery quality and the convergence will be
degraded. Consequently, it is essential to correct randomposi-
tional deviations of each LED and keep a fast convergence in
current FPM platforms.

In order to correct the random positional deviations,
we propose a correction approach for each LED element
with random positional deviations, termed rpcFPM, based
on the ePIE [14] and DPC [30], [31] algorithm which is
a quantitative phase retrieval technique employed in opti-
cal imaging. After each iteration, rpcFPM calculates the
cross correlation coefficient of objective function between
two adjacent iterations and adjust the feedback parameter
according to the coefficient value. The position shift and the
corrected position of each LED are also expressed in the iter-
ative process. Furthermore, an objective function relaxation
constraint is introduced for the new reconstruction frame-
work to suppress noise slightly. In addition, to improve the
recovering efficiency of the proposedmethod, recoveredDPC
phase information is utilized as an initial phase guess. After
initializing the DPC phase as the phase guess, all the captured
images are iterated under different feedback parameter in the
next iteration with objective function constraint. In this work,
we evaluate rpcFPM and conventional FPM reconstructed
results in simulations and experiments. All the results and
corrected reconstructed images demonstrate that using our
rpcFPM can achieve proper correction.

The whole article is structured as follows: First, we intro-
duce the FPM platform and the images acquisition module,
describe the conventional FPM algorithm, and then pro-
pose the iterative process rpcFPM with feedback parameter
and DPC initial phase guess to correct random positional

deviations of each LED element based on the ePIE algorithm.
In the next two sections, simulation, experimental results and
the conclusion are presented respectively.

II. THEORIES AND METHODS
A. SYSTEM AND IMAGES ACQUISITION
Firstly, let us review the FPM system and the images acquisi-
tion. Fig.1 (a) shows the FPM system which consists of LED
matrix illumination, sample, low-power objective lens, tube
lens and a CMOS camera. The LED matrix is controlled by
an Arduino circuit board shown in Fig. 1 (c) and each LED
illuminates the sample with an oblique plane wave vector
(as shown in Fig.1 (b)). In this work, the images acquisition
process contains two parts: images for DPC retrieval and
images for FPM reconstruction. In order to set the center
of LED matrix to the middle of the objective lens, we use
a simple method in brightfield localization (BFL) [32] to
adjust the LED matrix. In this adjustment process, we just
use the 3×3 middle LEDs which are in brightfield and the
corresponding captured images are shown in Fig.2 (a). The
boundary of the system setup and LED matrix are expressed
as red circle and orange dotted line respectively. We can see
that the center of the LED matrix is misaligned from the
center of system and the blue board line between brightfield
and darkfield is asymmetric. So we adjust the position of the
central LEDs to the middle roughly and the captured images
are shown in Fig. 2 (b) whose borders are symmetrical. Then,
we control the Arduino circuit board to obtain four types of

FIGURE 1. Experimental platform. (a) The actual experimental platform
on a Nikon eclipse microscope. (b) The module of FPM system and the
imaging process. (c) The controller of the LED array.
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FIGURE 2. The images captured by LEDs in brightfield. (a) shows the
captured images with misalignment and the boundary of brightfield and
darkfield. (b) shows the images after calibrating LED array and the
corresponding boundary.

illumination and capture the corresponding images as shown
in Fig. 3 (b). Finally, Fig. 3 (a) shows that we light each LED
in turn and 169 images are captured.

B. CONVENTIONAL FPM ALGORITHM
To illustrate the initial phase guess and the random positional
deviations of each LED element, we first describe the con-
ventional FPM process. Fig. 1 (b) is the simplified imaging
process as described in [15]. It is shown that each LED
element is an oblique plane wave vector described as uj =
(ux , uy) (j = 1, 2, · · · ,Nimg). Then this plane wave reaches

the specimen which is seen as a thin sample. So O(r) can be
expressed as the objective function in real-special plane and
O(u) is in image plane. Except the on-axis-illuminate LED,
the wave of other LEDs, whose position is sj, passing through
the sample is a shifted version O(u− uj, sj) in the exit field.
Next, the objective is equivalent to a low pass filter and its
corresponding objective pupil function is P(u). So in the
Fourier image plane, the complex image can be described as
ψj(u, sj) = P(u)O(u− uj, sj). And each frequency spectrum
information passes through the tube lens and inverses Fourier
transform to reach the image plane and the camera. In the
real-space, the corresponding estimated LR intensity image
is expressed as

Ej(r, sj) = |F−1
{
ψj(u, sj)

}
|
2
. (1)

where F−1 is the inverse Fourier transform. According to
the concept of FPM, the HR complex field can be recovered
from a set of LR captured intensity images Ij(r, sj) follow-
ing an iterative algorithm which updates the space spectrum
by replacing the estimated amplitudes with the Ij(r, sj) and
keeping the phase information unchanged. And the process
is called intensity constraint and expressed as

ψu
j (r− rj, sj) =

√
Ij(r, sj)

F−1
{
ψj(u, sj)

}√
Ej(r, sj)

. (2)

here we use ψu
j (r− rj, sj) as the updated complex amplitude

sub-image. Then this sub-image is transferred to the corre-
sponding frequency region and the updated sub-spectrum can
be described as

ψu
j (u− uj, sj) = P(u, sj)F

{
ψu(r− rj, sj)

}
. (3)

where F is the Fourier transform. As Fig. 3 (a) shows,
by selecting other sub-regions Nimg times, the HR intensity

FIGURE 3. The example of conventional FPM and DPC method. (a) The raw captured images and
reconstruction results of FPM. (b) The raw image, light source forms and corresponding ROI images
and the reconstruction results of DPC.
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and phase images can be extracted from the whole updated
spectrum.

Generally, in the above-mentioned conventional FPM
reconstruction, the initial intensity guess is LR on-axis-
illuminated image and the phase is zero. Thus, the recon-
structed quality and convergence are affected by the choice
of the initial value directly. Besides, because of the low
objective NA, the illumination angles of bright-field LED
elements are small and low-frequency phase information is
poorly captured. Same as the high-frequency information of
intensity images, it is difficult to reconstruct low-frequency
phase information. So a better recovered phase as the initial
phase can not only improve convergence, but also reconstruct
the low-frequency phase components correctly. Moreover,
in FPM platform, different LED elements have different
oblique plane waves uj and correspond to different objective
functions O(u− uj, sj) while each LED element is deter-
mined by the specified distance and position. The accurate
knowledge of each LED’s position is essential for high recon-
structed quality. In FPM, even though the distance between
adjacent LEDs is set to the same value, there are also some
errors and deviations during the manufacturing operation and
experimental process. Although we have adjusted the center
LED to the middle and the whole LED matrix has been
centrosymmetric, each LED element has different deviations
for the specified position. We call these deviations as random
positional deviations of each LED element which can bring
about significant distortion in FPM reconstruction. Hence
the random positional deviations correction for each LED
element is important in FPM platform.

C. ITERATIVE PROCESS OF RPCFPM
Based on the developed reconstruction scheme for ptychogra-
phy in [14] and [31], we propose a correction method, termed
rpcFPM, to improve the convergence and correct the ran-
dom positional deviations of each LED element. In rpcFPM,
the feedback parameter and the recovered DPC phase ω(u)
are applied in the iterative process. The objective func-
tion constraint is further introduced for the new framework.
Fig. 4 is a flow chart of rpcFPM and the specific process is
shown as follows.

Firstly, we define the pupil function of the setup which
is a low-pass filter. And after images acquisition, the light
source function is produced and the four intensity images
(Top IT (r), Bellow IB(r), Left IL(r), Right IR(r)) are obtained
as shown in Fig. 3 (b). And the four images are calculated to
get differential intensity images as

ID,1(r) =
IT (r)− IB(r)
IT (r)+ IB(r)

ID,2(r) =
IL(r)− IR(r)
IL(r)+ IR(r)

(4)

Then, through the distribution of light source S(u) and
pupil function P(u), the phase transfer function H (u) can
be calculated as described in [30]. Because each LED ele-
ment is treated as a coherent point source, the estimated

FIGURE 4. The flow diagram of the rpcFPM method.

DPC phase ω(u) can be transfered as

ID(u) = {H (u) • ω(u)}. (5)

where ID(u) is the estimated intensity image. By minimizing
the difference between the estimated ID(u) and calculated
ID,i(u)(i = 1, 2) intensities as follows,

min f (u) =
∥∥ID,i(u)− ID(u)∥∥2 . (6)

the DPC deconvolution phase ω(u) can be acquired. The
recovered phase result is shown in Fig. 3 (b). The raw sample
is feather, the region of interest under four light source forms
are fuzzy but the recovered DPC phase is high-resolution.

Next, the initial guess of intensity and phase are provided
and the corresponding initial objective function is set to

O0(u) = F{
√
ICen(r) • exp(jω(r))}. (7)

where ICen(r) represents the intensity of on-axis-illuminated
andω(r) is phase image in spatial domain. Using the objective
function O0(u) and imposing intensity constraint as Eq. (2),
the spectrum ψu

j,k

(
u, sj

)
can be updated. In order to recon-

struct O
(
u, sj

)
based on ePIE, we should minimize the cost

function as follows.

δ = min f (O) = ((P(u)Ouk
(
u, sj

)
− ψk (u, sj))). (8)

To adjust the reconstructed objective function slightly,
we further introduce the objective function relaxation con-
straint into Eq. (8) and the model can be optimized as

f (O) = (‖POk − ψk‖2+λ‖Ok‖2). (9)
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FIGURE 5. An example of complex images with standard location and positional deviations. (a) The random LEDs positional deviations.
(b1)-(b2) The true high-resolution intensity and phase images. (c1)-(c2) The simulated images without and with random deviations.
(d1)-(d2) The on-axis-illuminated intensity and phase images with LEDs positional deviations for FPM reconstruction.

where λ is a regularization coefficient to prevent the model
from overfitting. In implementation, the objective function is
updated as

Ouk+1
(
u, sj

)
= Ouk

(
u, sj

)
+ γ

∂f (O)
∂O∗

. (10)

Here the feedback parameter γ is the gradient descent step.
And the first derivative of f (O) can be expressed as

∂f (O)
∂O∗

= (P∗(u)(P(u)Ouk
(
u, sj

)
− ψk (u, sj))+ λOuk

(
u, sj

)
).

(11)

where P∗(u) represents the conjugate of P(u). Therefore,
the corresponding objective function Ou

(
u, sj

)
according to

Eq. (10) can be updated as

Ouk+1
(
u, sj

)
= Ouk

(
u, sj

)
+ γ (P∗(u)(P(u)Ouk

(
u, sj

)
−ψk (u, sj))+ λOuk

(
u, sj

)
). (12)

where

γ =
β(sk , s)

|P(u)|2max
. (13)

In this model, β(sk , s) denotes an adaptive feedback param-
eter of positional deviations and |P(u)|2max represents a nor-
malizationmatrix. Normally, to complete one iteration, all the
169 images corresponding to each LED should be updated.
The feedback parameter plays an important role in positional
correction, which is often set as a constant value in ePIE.
However, in this scheme, it is an alterable parameter which
is relative to the positions. Actually, the feedback parameter
represents the amount and region of information used in the
next iteration from the previous estimate. In Eq. (12), when
the incremental quantity dwindles gradually, the objective
function of the adjacent iterations becomes more similar.
Because the object estimate O(u, sj) is related to the position
of each LED element, the random positional deviations can

bring some distortion into the updated objective function
during each iteration. In such condition, the feedback infor-
mation of each LED is different and the correlation between
adjacent iterations is poor.

Finally, in order to acquire the corrected position of each
LED in the iterative process, we add the following after the
updated objective function.

sj,k+1 = sj,k + β1. (14)

where 1 is expressed as positional shift of the correspond-
ing LED element between Ouk+1(u, sj) and O

u
k (u, sj), which

acquired from the peak value of the cross correlation function.
And, the correlation coefficient value also can reflect whether
the positional deviations are corrected. Thus, the correlation
coefficient value of Ouk+1(u, sj) and O

u
k (u, sj) is calculated to

adjust the feedback parameter.

C(u) = Ouk+1(0, 0)⊗ O
u
k (0, 0)

=

∫∫
Ouk+1(ux ,uy)O

u
k (ux ,uy)duxduy. (15)

where ⊗ represents the convolution and (ux ,uy) is the fre-
quency domain coordinate of the pixel index. It can be seen
that the objective function relevance is greater, the positional
deviations level 1 are lower and the errors between the
corrected position sj,k+1 and the ideal position s are smaller.
In other words, when C(u) becomes greater than a thresh-
old, it means the random deviations are nearly corrected
and the objective function is more and more accurate. Thus,
during the next iteration process, the used information can
be decreased for convergence and the corresponding region
is more similar to each other. In this case, the feedback
parameter is set to β

2 in the next iteration. On the contrary,
feedback parameter is invariant.

β =

{
β/2, C(u) ≥ threshold
β, otherwise

(16)
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FIGURE 6. The reconstruction results of LR samples with random position deviations using three methods. (a)-(b) The recovered HR intensity,
phase images and the central parts of the recovered frequency spectrum respectively with random deviations using Gerchberg-Saxton and
global methods. (c) The recovered HR intensity, phase images and the central part of the recovered frequency spectrum respectively with the
same deviations condition using rpcFPM method. (d) The position of each LED element in different situations. (e)-(f) The intensity and phase
SSIM curves varying with random deviations using three methods.

In this scheme, the initial parameter is set one. And it
should be emphasized that it is performed between two adja-
cent iterations of the object under the same LED element
with different positions, which corrects random deviations
of each element rather than aligns the misalignment of the
whole LED matrix. After K iterations, the random deviations
of each LED element are corrected and the corresponding
positional shifts 1 are zero approximately. Besides, a HR
complex image can be reconstructed with faster convergence.
Moreover, the computational cost can be further reduced
due to the decrease of the feedback parameter. In rpcFPM,
the convergence and the low-frequency components can be
improved correctly because of the recovered DPC phase.
And the unknown random positional deviations of each LED
element correction attributes to the correlation coefficient
value and the feedback parameter.

III. RESULTS
A. SIMULATIONS
We first validate the effectiveness of rpcFPM scheme using
simulations before actual experimental data. The simulation
parameters are chosen to model a practical FPM platform
with an illumination wavelength of 629nm, an image sensor
(2160×2560) with pixel size of 6.5µm and a 4× objective
with NA of 0.13. We simulate the use of the illumination
LED matrix source (13×13) to provide angle-varied illumi-
nations and the distance between the LED matrix and the
sample is about 98mm. Similar to the experimental system,
169 LR intensity images are simulated under these parame-
ters. The raw LR complex images are created from the true
HR intensity and phase images with 128×128 pixels shown
in Fig. 5 (b1) and Fig. 5 (b2). In addition, each position of
LED element is added to an artificial random value based
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FIGURE 7. Experimental results of the USAF target. (a) The FOV of the USAF target image. (b1) The enlarged
ROI. (c1)-(e1) The recovered high-resolution intensities with the Gerchberg-Saxton method, global method,
and rpcFPM method respectively. (b2)-(e2) The intensity line traces corresponding to (b1)-(e1).
(f) The recovered high-resolution phase with rpcFPM method.

on the standard location (We set the distance between each
adjacent LED is 8.128mm without any deviations.). So the
simulated LR images are different from these simulated under
standard LED matrix. Then, conventional FPM algorithm
and rpcFPM algorithm are applied to reconstruct HR inten-
sity and phase images. Here, it is worth mentioning that all
of the algorithms use the on-axis-illuminated intensity and
DPC recovered phase as the initial guess, which provides
a good estimate and faster convergence of the HR complex
objective function. Because the artificial random positional
deviations of 0-1.5mm are introduced in each LED element,
the ideal and erroneous positions are simulated in Fig. 5 (a).
As Fig. 5 (a) shows, all of the standard ideal LED positions
are marked with red dots while the positions with random
positional deviations are marked with green X marks. And
we define the first LED is the leftmost and uppermost one

as (1, 1). Fig. 5 (c1) and Fig. 5 (c2) show the segment of
the central FOV under two positional situations. Fig. 5 (c1)
presents the simulated image without random deviations
while Fig. 5 (c2) is the image with 0-1.5mm shifting devi-
ations of each LED element. Fig. 5 (d1) and Fig. 5 (d2) show
the recovered intensity and phase images without positional
deviations correction. It is obvious that the intensity and phase
image components in Fig. 5 (d2) are distorted.
Because of the same operation of initial phase acquisition,

we just compare the after-reconstruction process of rpcFPM
with the Gerchberg-Saxton and global methods using struc-
ture similarity (SSIM) as the evaluation criteria to verify
the effectiveness of rpcFPM. Then we employ Gerchberg-
Saxton, global and rpcFPM methods to reconstruct the HR
complex images using raw LR samples with random devi-
ations of each LED element in Fig. 5 (a). Fig. 6 shows the
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FIGURE 8. Experimental results of a biological intestine tissue. (a) The FOV of the low-resolution
intensity specimen. (b) The enlarged ROI in (a). (c1)-(e1) The recovered high-resolution intensities
with the Gerchberg-Saxton method, global method, and rpcFPM method respectively. (c2)-(e2) The
recovered high-resolution phase images corresponding to (c1)-(e1).

reconstructed results using three methods under the same
positional deviations respectively. In Fig. 6 (a)-(c), the iter-
ation stops when the variation of SSIM is less than 0.0001.
But in order to compare the rate of convergence, the iteration
number is 50 times in Fig. 6 (e)-(f). Fig. 6 (a) and Fig. 6 (b)
are the recovered intensity and phase images and the cor-
responding central parts of the recovered frequency spec-
trum without LED random deviations correction, while the
recovered results with correction using rpcFPM method are
shown in Fig. 6 (c). Fig. 6 (d) presents the positions of
different LED elements in spatial domain. The uncorrected
positions of each LED element with deviations are labeled
with red X marks, the actual positions are blue dots and
the corrected positions are orange diamonds respectively.
For example, after Eq. (10) and Eq. (12), we can get the
deviation of (7, 6) LED is (+0.23mm,+7.348mm), the actual
position is (0,−8.128mm) and the corrected position is

(+0.063mm,−7.89mm). Comparing Fig. 6 (a)-(c), we can
see that the random positional deviations of each LED ele-
ment lead significant errors to the reconstructed HR results.
It also can be seen that the reconstructed quality decreases
significantly using conventional methods. The SSIM scores
between the reconstructed results and the ground truth using
rpcFPM are better than the other two methods. Besides,
the random deviations of each LED element are corrected
and the corrected positions are almost identical to the actual
positions in Fig. 6 (d).

Furthermore, the curves of SSIM are used to evaluate the
quality of reconstructed results. Fig. 6 (e) and Fig. 6 (f)
illustrate the intensity and phase SSIM curves using
Gerchberg-Saxton, global and rpcFPM methods to numeri-
cally analyze the effectiveness of rpcFPM. It is shown that
the SSIM using rpcFPMmethod is better than others. We also
compare the convergence of the three methods used in this
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work. It is obvious that rpcFPM nearly reaches the optimal
solution after 15 iterations. However, the SSIM of GS and
global methods increase gradually and slowly, especially the
global method. When the iteration is 50 times, the global
method has not been converged. So rpcFPM can increase
the convergence and reaches better results. Thus, the simu-
lation results indicate that the FPM reconstructed results are
significantly improved after correcting the random positional
deviations of each LED element with rpcFPM.

B. EXPERIMENTS
In order to verify the validity of rpcFPM, we experimentally
compare the recovered results based on a real FPM platform
(Fig. 1). The experimental microscope system is equipped
with a 13×13 custom-made LED array (8.128mm between
adjacent LED elements) as the angle-varied illuminations to
provide 629nm central wavelength. The distance between the
sample and the LED array is about 100mm. A set of 169 LR
intensity images is imaged with a 4× objective (0.13 NA) and
a scientific CMOS (sCMOS) camera with 2560×2160 pixels
(6.5µm pixel size). In principle, illumination from each LED
is approximately spherical and the final synthetic NA of this
system is the sum of objective and the largest angle illumina-
tion (approximately 0.7). The exposure time of each sample’s
image is recorded with 100ms, except the DPC images.

We use an USAF target to quantify the resolution improve-
ment for existing random positional deviations of each LED
and positional deviations correction algorithms. Fig. 7 (a)
presents the full FOV and LR image and a small region of
interest (ROI, 200×200 pixels) is shown in Fig. 7 (b1). Two
conventional FPM methods and rpcFPM method are used to
reconstruct HR image under the same region and pupil func-
tion. Fig. 7 (c1)-(d1) show the recovered HR images without
random deviations correction using Gerchberg-Saxton and
global methods respectively. Fig. 7 (e1) shows the recovered
HR images under the same deviations using rpcFPMmethod.
It can be seen that the recovered HR images in Fig. 7 (c1)-(d1)
are distorted because of the random positional deviations.
Corresponding to Fig. 7 (b1)-(e1), Fig. 7 (b2)-(e2) are the
intensity line traces of the USAF target. We can obviously
see that the intensity line trace in Fig. 7 (e2) has the high-
est contrast with the help of rpcFPM. Comparing with raw
image, the resolution all can be improved for each algo-
rithm. However, a better recovered complex image with lower
background noise and higher resolution can be achieved by
rpcFPM. These results indicate that the random position
deviations of each LED can be corrected efficiently and the
reconstruction quality can be improved distinctly.

Finally, we also compare rpcFPM with Gerchberg-Saxton
and global methods on a biological intestine tissue. Similar
to the USAF, Fig. 8 (a) presents the full FOV of the speci-
men and Fig. 8 (b) shows the corresponding magnified area
of interest (200×200 pixels), which is poorly visible and
loses valuable details. Fig. 8 (c1)-(d1) and Fig. 8 (c2)-(d2)
are the recovered intensity and phase images of Fig. 8 (b)
without random positional deviations correction using

Gerchberg-Saxton and global methods respectively.
Fig. 8 (e1) and Fig. 8 (e2) are the recovered intensity and
phase images under the same deviations using rpcFPM
method. Though all the algorithms can improve the reso-
lution, Fig. 8 (e1) and Fig. 8 (e2) using rpcFPM achieve
higher reconstruction quality, lower noise-included artifacts
and outperform the other methods.

IV. CONCLUSION
In this work, we have proposed a random positional devia-
tions correction with initial DPC phase named rpcFPM for
FPM reconstruction. It is efficient on time and can decrease
the destabilization of the randompositional deviations of each
LED element. Different from the previous position correc-
tion methods for conventional FPM, rpcFPM corrects the
random positional deviations of each LED element with a
feedback parameter and objective function constraint based
on ePIE algorithm and obtains a better initial guess to improve
the convergence. Furthermore, comparing with the ordinary
FPM, the initial phase of rpcFPM is obtained from DPC
method, which can accelerate the convergence and achieve
HR phase image with more low-frequency details. Besides,
rpcFPM can correct the random positional deviations of
each LED element rather than the whole matrix misalign-
ment within iterative process according to the correlation
coefficient value. Moreover, rpcFPM can be easily extended
by introducing objective function constraint. We also have
demonstrated the high-quality of recovered intensity and
phase images through simulations and experiments using
Gerchberg-Saxton, global and rpcFPM methods. The simu-
lations and experiments all show that rpcFPM can correct
the positional deviations adaptively, significantly improve the
reconstruction quality of HR complex images and convergent
faster than conventional GS and global methods.

Although rpcFPM improves the recovery quality and cor-
rects the random positional deviations of each LED from
the results above, it cannot reconstruct the pupil function.
Besides, the sampling speed in rpcFPM is still cost-effective.
The combination of rpcFPM method and multiplexed
coded illumination algorithm may overcome this weakness.
Moreover, because this performance is limited by ePIE algo-
rithm, rpcFPM may just reach a local optimum or become
a huge calculation-consuming task if each LED has con-
siderably deviations. This appears to be a limitation of our
app roach and it will be the subject of future work.
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